HUMAN RESOURCES FOR TREATING NEW CANCER CASES IN INDIA

Executive Summary
The purpose of this report is to describe the human resources needed in India to treat new cancer patients. The population of India is approximately 1.26 billion (649.47 million men and 608.88 million women) and the estimated number of new cancer cases in India for the year 2012, based on GLOBOCAN data (http://globocan.iarc.fr/) for India as a whole was 1014934 (477482 in men and 537452 in women) (Table A).

The five most common cancers in India are (1) gynecological (cervix uteri, corpus uteri and ovary), (2) head and neck (lip, oral cavity, nasopharynx, other pharynx, larynx and thyroid), (3) breast, (4) hematological malignancies (Hodgkin lymphoma, non-Hodgkin lymphoma, multiple myeloma and leukemia) and (5) lung.

Table A: The ten most frequently occurring cancers in India for men and women based on 2012 GLOBOCAN data.

<table>
<thead>
<tr>
<th>Cancer</th>
<th>BOTH SEXES</th>
<th>MEN</th>
<th>WOMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incidence</td>
<td>Rank</td>
<td>Incidence</td>
</tr>
<tr>
<td>All cancers excl. non-melanoma skin cancer</td>
<td>1014934</td>
<td></td>
<td>477482</td>
</tr>
<tr>
<td>Gynecological</td>
<td>162003</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Head and Neck</td>
<td>158991</td>
<td>2</td>
<td>115393</td>
</tr>
<tr>
<td>Breast</td>
<td>144937</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Hematological</td>
<td>71659</td>
<td>4</td>
<td>45445</td>
</tr>
<tr>
<td>Lung</td>
<td>70275</td>
<td>5</td>
<td>53728</td>
</tr>
<tr>
<td>Colorectal</td>
<td>64332</td>
<td>6</td>
<td>36917</td>
</tr>
</tbody>
</table>
Newly diagnosed cancer patients need pathology, surgery, chemotherapy and/or radiation therapy. The number of oncologists needed is based, therefore, on the number of patients requiring pathology, surgery, chemotherapy and radiation therapy (Table B). This number is estimated from the percentage of patients requiring surgery, chemotherapy and/or radiation therapy for the top ten cancers in both men and women.

For developing countries the International Atomic Energy Agency (IAEA) recommends training Radiation/Clinical Oncologists who can prescribe both radiation and chemotherapy for the common solid cancers, instead of separate medical and radiation oncologists. Hematological malignancies are treated primarily by hematologist-oncologists. The number of specialists needed is based upon the number of cancer patients but each city, in order to ensure coverage if one person leaves or goes on vacation, must have at least 2 surgical oncologists, 2 radiation/clinical oncologists, 2 hematologist oncologists, etc.

Table B: Number of Oncologists needed for India’s 2 most populous cities based on 2011 population estimates (http://citypopulation.de/) and 2012 GLOBOCAN data for new cancer cases.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Population</th>
<th>New Cancer Cases</th>
<th>Hematologist Oncologists</th>
<th>Surgical Oncologists</th>
<th>Radiation / Clinical Oncologists</th>
<th>Urologic Oncologists</th>
<th>Gynecologic Oncologists</th>
<th>Pathologists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomach</td>
<td>63097</td>
<td>7</td>
<td>43386</td>
<td>4</td>
<td>19711</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urological</td>
<td>48324</td>
<td>8</td>
<td>42164</td>
<td>5</td>
<td>6160</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esophagus</td>
<td>41774</td>
<td>9</td>
<td>27152</td>
<td>7</td>
<td>14622</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>27416</td>
<td>10</td>
<td>17236</td>
<td>8</td>
<td>10180</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain, nervous system</td>
<td>18831</td>
<td>11</td>
<td>11855</td>
<td>9</td>
<td>6976</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallbladder</td>
<td>18787</td>
<td>12</td>
<td>7615</td>
<td>10</td>
<td>11172</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to oncologists, support staff such as onco-pharmacists, pharmacy technicians, oncology nurses and palliative care specialists is also needed. Many cancer patients require hospitalization for diagnosis, treatment and/or complications, therefore an adequate number of oncology beds will be needed. The number of oncology nurses, onco-pharmacists and pharmacy technicians needed is based upon the number of beds occupied daily by cancer patients while the
number of palliative care specialists is based on the number of new cancer cases per year (Table C). The oncology nursing staff for each 24-bed oncology unit (operating 24 hours a day, 7 days a week) comprises of one head nurse and a nurse specialist as well as 13 nurses working 8 hour shifts, 5 days per week.

Table C: Number of Oncology Units, Nursing and Pharmacy Staff needed for India’s 2 most populous cities based on 2011 population estimates and 2012 GLOBOCAN data for new cancer cases.

<table>
<thead>
<tr>
<th>New Cancer Cases</th>
<th>Maximum # of beds/day</th>
<th># of 24 bed oncology wards</th>
<th>Oncopharmacists</th>
<th>Oncopharmacy Technicians</th>
<th>Palliative Care Specialists</th>
<th>Oncology Nursing Staff other than Radiation Oncology Nurses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mumbai</td>
<td>14837</td>
<td>248</td>
<td>11</td>
<td>44</td>
<td>66</td>
<td>30</td>
</tr>
<tr>
<td>Delhi</td>
<td>13188</td>
<td>221</td>
<td>10</td>
<td>40</td>
<td>60</td>
<td>27</td>
</tr>
</tbody>
</table>

Since many cancer patients require radiotherapy, appropriately equipped facilities will be needed along with radiation oncology staff (Tables D and E). Radiation oncology staff includes radiation therapy technicians, medical physicists, Linac engineers and radiation oncology nurses in addition to radiation/clinical oncologists. The minimum radiation therapy equipment requirements are at least one of each: Linac, brachytherapy unit, CT simulator, treatment planning computer and dosimetry/quality assurance package.

Table D: Radiation Therapy Staff needed for India’s 2 most populous cities based on 2011 population estimates and 2012 GLOBOCAN data for new cancer cases.

<table>
<thead>
<tr>
<th>New Cancer Cases</th>
<th>Radiation / Oncologists</th>
<th>Clinical Oncologists</th>
<th>Radiation Therapy Technicians</th>
<th>Medical Physicists</th>
<th>Linac Engineers</th>
<th>Radiation Oncology Nurses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mumbai</td>
<td>14837</td>
<td>75</td>
<td>100</td>
<td>34</td>
<td>9</td>
<td>34</td>
</tr>
<tr>
<td>Delhi</td>
<td>13188</td>
<td>66</td>
<td>89</td>
<td>30</td>
<td>8</td>
<td>30</td>
</tr>
</tbody>
</table>

Table E: Radiation Therapy Equipment needed for India’s 2 most populous cities based on 2011 population estimates and 2012 GLOBOCAN data for new cancer cases.

<table>
<thead>
<tr>
<th>New Cancer Cases</th>
<th>Linacs / Co 60 Megavolt Units</th>
<th># of Brachytherapy units</th>
<th># CT simulators</th>
<th># of treatment planning computers</th>
<th># of dosimetry/QA package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mumbai</td>
<td>14837</td>
<td>17</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
NOTE: Guidelines from the IAEA of the United Nations were used to calculate the radiation therapy equipment and staff needed in the setting of a developing country. Guidelines from the Oncology Nursing Society were used to calculate the number of nurses needed. Several other specialty societies were also requested to provide guidelines but in most cases there were none, therefore colleagues active in those fields were consulted for estimating the number of staff needed.