Personalized Kidney Dosimetry for Y-90 DOTATOC Radionuclide Therapy

M. T. Madsen¹, Y. Menda¹, J. J. Sunderland¹, D. Bushnell¹, M. K. Schultz¹, G. L. Watkins¹, M. E. Martin², T. M. O'Dorisio³, M. S. O'Dorisio²

¹Radiology, University of Iowa, Iowa City, IA, ²Pediatrics, University of Iowa, Iowa City, IA, ³Internal Medicine, University of Iowa, Iowa City, IA
Disclosures & Acknowledgements

• No Financial Disclosures
• 68Ga DOTATOC & 90Y DOTATOC are investigational agents. Studies presented here are performed under a physician sponsored investigational new drug (IND) approval.
• This project was funded by NIH 5 R01 CA167632 (M. Sue O'Dorisio & Y Menda, PIs)
• At the University of Iowa, the **Image Guided Diagnosis and Therapy of Neuroendocrine Tumors** project uses 68Ga DOTATOC to determine the eligibility of subjects to receive 3 therapeutic cycles of 90Y DOTATOC.

• The kidneys are the critical organ and limit the amount of 90Y DOTATOC that can be safely administered.

• Sequential bremsstrahlung SPECT/CT at 5, 24, 48 & 72 hours determines kinetics while PET/CT imaging at 5 hours determines absolute kidney activity.
Y-90 Decay: β^- & pair production

- **99.989%**

- **0.011%**

- **2.28 MeV** β^-, e^- (0.003%)

- 64 hour life
- Emits 2.28 MeV beta minus (mean energy: 0.934 MeV)
- Bremsstrahlung interactions with tissue produce sufficient x-rays for SPECT imaging.
- Also has a pair production branch that results in a positron $\sim 30/1,000,000$ decays.

Assaying and PET Imaging of Yttrium-90: 1$>>$34ppm$>$0

RJ Nickles, et al. IEEE MIC, 2004
Y-90 DOTATOC PET/CT Kidney Imaging
Y-90 DOTATOC PET/CT Tumor Imaging

Y-90 uptake in tumors is easily seen on PET/CT
METHODS

90Y DOTATOC & amino acid infusion

- Cycle 1: 4.4 GBq
- Cycle 2: <5.6 GBq* (6 weeks)
- Cycle 3: <5.6 GBq* (12 weeks)

*Activity modified by kidney dose determined from previous treatments to keep below 23 Gy

Kidney Activity

<table>
<thead>
<tr>
<th>Time Post Administration (h)</th>
<th>5 h</th>
<th>24 h</th>
<th>48 h</th>
<th>72 h</th>
</tr>
</thead>
</table>

Personalized dosimetry data

30 minute TOF PET scan; PET kidney activity calibrates SPECT clearance data.

Bremsstrahlung SPECT/CT

- t = 5 h
- t = 24 h
- t = 48 h
- t = 72 h
<table>
<thead>
<tr>
<th>Subjects</th>
<th>Kidney Dose/Activity (mGy/MBq)</th>
<th>Administered Activity (GBq)</th>
<th>Baseline Creatinine</th>
<th>Follow up Creatinine</th>
<th>Time Post Treatment (Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>4.4 5.6</td>
<td></td>
<td>0.7</td>
<td>0.8</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>4.4 5.5 5.2</td>
<td></td>
<td>0.8</td>
<td>0.9</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>4.5 4.7 5.6</td>
<td></td>
<td>1.3</td>
<td>1.5</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>4.4 4.7 5.6</td>
<td></td>
<td>0.9</td>
<td>0.9</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>4.4 4.7 2.6</td>
<td></td>
<td>1.1</td>
<td>0.9</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>4.5 5.5 5.5</td>
<td></td>
<td>1.2</td>
<td>0.9</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>4.5 4.7 2.3</td>
<td></td>
<td>1.2</td>
<td>1.1</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>4.5 4.9 5.5</td>
<td></td>
<td>1.3</td>
<td>1.4</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>4.4 5.5 4.5</td>
<td></td>
<td>1.2</td>
<td>1.1</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>4.4 5.5 5.5</td>
<td></td>
<td>1.3</td>
<td>1.4</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>4.5 5.5 5.4</td>
<td></td>
<td>1.2</td>
<td>1.1</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>4.4 5.6 4.5</td>
<td></td>
<td>1.3</td>
<td>1.4</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>4.4 5.6 5.6</td>
<td></td>
<td>1.3</td>
<td>1.4</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>4.4 5.6 5.6</td>
<td></td>
<td>1.3</td>
<td>1.4</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>4.4 5.6 5.6</td>
<td></td>
<td>1.3</td>
<td>1.4</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>3.8 3.9 3.9</td>
<td></td>
<td>0.9</td>
<td>0.7</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>4.4 2.7 3.6</td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>11</td>
</tr>
</tbody>
</table>
Simplified Dose Estimate?

- SPECT/CT imaging sessions over 72 hours puts a burden on both patients and nuclear medicine clinic.
- We observed that the slow component clearance (~ 35 hour half time) was fairly consistent among subjects.
- Could a single measurement be sufficiently predictive for estimating tumor dose?
There is a reasonable correlation between the kidney concentration from PET/CT and the total estimated kidney dose.
Single Time Point Dose Estimate

- Exponential clearance (mono- or biexponential clearance).
- Mean clearance rate is known and the sd is on the order of 25%.
- Optimal sampling time is at τ_{eff} (effective mean life).
- Variations in the actual rate constants of up to 50% result in dose estimates with 10% accuracy.
Single Time Point Derivation

Biexponential

\[A(t) = A_0 \exp(-k t) \]

\[\lambda = \frac{A_0}{k} = A(T) \exp(k T) / k \]

For a population with a mean clearance rate \(k \),

\[\lambda^* = A(T) \exp(k T) / k \]

Optimal sampling time:

\[T = \frac{1}{k} \]

Monoexponential

\[A(t) = A_1 \exp(-k_1 t) + A_2 \exp(-k_2 t) \]

\[\lambda = \frac{A_1}{k_1} + \frac{A_2}{k_2} = \frac{A_2}{k_2} \left(\frac{c}{a} + 1 \right) \]

where

\[c = \frac{A_1}{A_2} \]

\[a = \frac{k_1}{k_2} \]

\[\lambda^* = A(T) \times \left(\frac{c}{a} + 1 \right) \left(\frac{c \exp(-a k_2 T) + \exp(-k_2 T)}{k_2} \right) \]
Estimated Parameters For Y-90 DOTATOC

- $\hat{k}_2 : 0.02/h$
- $\hat{c} : 1.1$ (ratio of A_1 and A_2)
- $\hat{a} : 12.1$ (ratio of k_1 and k_2)
• There is sufficient 90Y signal to quantify kidney uptake with PET/CT and this can be used to calibrate clearance curves for the calculation of kidney absorbed dose for multi-cycle treatment protocols.

• Kidney dose assessment is likely required for each cycle since treatment related changes to the distribution of activity may occur.

• A single 90Y DOTATOC PET study may be sufficient to estimate kidney dose with enough accuracy to determine treatment administrations.

• The method for estimating kidney dose can be applied to estimate the dose to tumor or other tissues in the PET field of view.
Thursday, 31-MAR-2016

Dear Dr. Mark Madsen:

On behalf of the SNMMI, we thank you for submitting your abstract, as referenced below, for presentation to the SNMMI 2016 Annual Meeting in San Diego, CA, June 11-15.

Abstract Control #582
Abstract Title: Personalized kidney dosimetry for Y-90 DOTATOC radionuclide therapy

However, we regret to inform you that this abstract was not accepted for presentation this year. We wish to encourage you to continue submitting abstracts to the SNMMI Scientific Program for consideration in future years. We also hope you can still join us in San Diego! Registration info can be found here: http://www.snmmi.org/AM/Registration/Content.aspx?ItemNumber=12340&navItemNumber=12341&navItemNumber=12198

For question or comments, please contact the SNMMI Senior Program Manager, Delicia Hurdle at dhurdle@snmmi.org.

Sincerely,

Satoshi Minoshima, MD, PhD
Chair, SNMMI Scientific Program Committee
Results

<table>
<thead>
<tr>
<th></th>
<th>Cycle 1</th>
<th>Cycle 2</th>
<th>Cycle 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects</td>
<td>21</td>
<td>17</td>
<td>15</td>
</tr>
</tbody>
</table>

Results Averaged Over All Subjects & Cycles

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administered Activity (GBq)</td>
<td>4.7</td>
<td>0.63</td>
</tr>
<tr>
<td>Kidney Activity (MBq)</td>
<td>105.8</td>
<td>42</td>
</tr>
<tr>
<td>%Kidney Activity</td>
<td>2.3%</td>
<td>0.88%</td>
</tr>
<tr>
<td>Kidney Mass (g)</td>
<td>415.3</td>
<td>82</td>
</tr>
<tr>
<td>Kidney Dose (Gy) per Cycle</td>
<td>6.4</td>
<td>2.39</td>
</tr>
<tr>
<td>Kidney Dose/Activity (mGy/MBq)</td>
<td>1.4</td>
<td>0.54</td>
</tr>
</tbody>
</table>
Results: Kidney Dose May Change with Treatment

Treatment effects can alter the distribution enough to change the dose delivered to the kidneys and other tissues.

Cycle 1
Kidney Dose: 1.13 mGy/MBq

Cycle 2
Kidney Dose: 1.93 mGy/MBq