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Introduction: 
Imaging of Pb-212

Quantitative SPECT imaging of Pb-212 challenging because of:

• Complicated decay scheme

• Complicated emission spectrum

• Small injected activities



Goal of study

Demonstrate the feasibility of quantitative Pb-212 
SPECT imaging to provide accurate estimates of 
absorbed doses in the different organs. 



Methods – Phantom

• Based on a patient that underwent a Pb-203 study 
• Modeled an administered activity of 2.1 mCi of Pb-212
• Values for the fraction of the injected activity (FIA) in each organ were 

based on distributions obtained from 6 Pb-203 clinical studies, 
• Accounted for the different half-lives for Pb-203 (51.87 hr) and Pb-212 (10.64 hr)

• Simulated acquisition at 1, 24 and 48 hours post injection 
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Methods – Experiment 1 

Goal: To determine the optimal acquisition energy window 
and collimator

• Generated projections using the SIMIND Monte Carlo (MC) 
simulation program 

System Siemens Symbia dual-head SPECT

Detector 3/8” NaI crystal

Intrinsic spatial resolution 3.8 mm

Projection bin size 4.8 mm

Collimator Medium energy and High energy

Radius of rotation Body contouring



Methods – Experiment 1

• Generated energy spectra at 4 projection views separated by 
90 degrees over the energy range 50 to 3000 keV 

• Generated separate spectra for:
• All photons and 

• Primary geometric photons 

• Used a projection-domain signal-to-noise ratio (SNR) as the 
metric for optimization
• SNR: square of geometrically-collimated primary-photon counts 

divided by total photon counts 



Results – Experiment 1

HEGP – All photons
MEGP – All photons



Radionuclide Collimator Energy Window SNR

Pb-212 HEGP W1=67-91 keV 7.0689

Pb-212 HEGP W2=220-257 keV 5.7314

Tl-208 HEGP W3=484-538 keV 0.05253

Tl-208 HEGP W4=556-613 keV 0.5863

Radionuclide Collimator Energy Window SNR

Pb-212 MEGP W1=67-91 keV 6.3824

Pb212 MEGP W2=220-257 keV 5.3771

Tl-208 MEGP W3=484-538 keV 0.04803

Tl-208 MEGP W4=556-613 keV 0.4807

Results – Experiment 1
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Conclusions – Experiment 1

• The HEGP collimator is moderately more appropriate 
than the MEGP collimator. 
• SNR is higher by ~10%  and 7% in window W1 (67-91 keV) 

and W2 (220-257 keV), respectively. 

•Acquisition energy windows W1 and W2 contain 
approximately equal information.

• It is recommended to acquire the data in separate 
energy windows since the attenuation, scatter, etc., 
are different for these two energy ranges. 



Methods – Experiment 2

Goal: To evaluate the quantitative precision when using the 
acquisition parameters identified in experiment 1 

A. SIMIND simulations:

System Siemens Symbia dual-head SPECT

Detector 3/8” NaI crystal

Intrinsic spatial resolution 3.8 mm

Number of projections 64 over 360°

Projection bin size 4.8 mm

Collimator Medium energy and High energy

Radius of rotation Body contouring

Acquisition Energy Window W1: 67 -91 keV, W2: 220-257 keV

Total acquisition time ~20 minutes



Methods – Experiment 2

• For each collimator and energy window, we generated 
separate projections for: 
• All photons – i.e. model all possible effects
• Scattered photons – used to perform ideal scatter 

compensation 

• Separately simulated projections of the heart, lungs, 
liver, kidneys, spleen and marrow. 

•Generated 25 noise realizations for each combination 
of collimator and energy window



Methods – Experiment 2

B. Image Reconstruction:
• Ordered Subsets-Expectation Maximization (OS-EM)

• Iterations: 1, 2, 5, 10, 20, and 40  

• Subsets: 16 

• Compensations: Attenuation, scatter and spatially varying 
geometric collimator-detector response modelling 

C. Precision and Accuracy Analysis:
• Precision: Calculated the Coefficient of Variation (COV) for each 

organ and time point over 25 noise realizations

• Accuracy: Plotted the counts in each organ and each time point 
averaged over all noise realizations versus the true organ activity



Results – Experiment 2
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Results – Experiment 2

Precision – COV 



Results – Experiment 2

Accuracy



Results – Experiment 2

Accuracy

Correlation coefficient = 0.99 Correlation coefficient = 0.98



Conclusions – Experiment 2

•Quantitative Pb-212 imaging with reasonable 
precision is feasible

•The precisions decrease with time and are better 
for organs with larger activities.




