

# **Alpha-PET DoubLET**

A Flexible Theragnostic Molecular Platform Technology for Alpha and/or Beta Therapy with PET-based Dosimetry

### **RPT Interest Group 6-7-23**

Geoffrey B Johnson, MD, Ph.D Chair, Nuclear Medicine Associate Director, Mayo Clinic Comprehensive Cancer Center

Mukesh K Pandey, Ph.D, FRSC Director, Molecular Imaging Research Program

### **Disclosures**

### Research Funding

### Novartis, Pfizer, MedTrace, Clarity, Clovis, Perspective, GE

Consulting

Pfizer, Novartis, Curium, Blue Earth, AstraZeneca, Siemens, Z-Alpha, Lantheus, GE

### Intellectual Property

Mayo and I hold patents pending on radionuclide theranostic technologies Mayo and I have know-how agreements for technology development with Perspective, MedTrace and Nucleus

#### Positions

### Chief Scientific Officer, Nuclear RadioPharma

## Mayo Clinic Opens New and Largest Radiopharmaceutical Theranostic Center





©2020 MFMER | slide-3

# **Nuclear Medicine Therapy Center**







©2020 MFMER | slide-4

# **Nuclear Medicine Therapy Center**











# Mayo Clinic's New Dedicated Theranostic Center

- 9 new outpatient dedicated theranostic rooms
  - 2 with beds and dedicated bathrooms
  - 7 with chairs and shared patient bathrooms
- 10 Therapy/Uptake rooms\* (Research Center)
- 4 Inpatient therapy rooms\* (Hematology Floor)
- 2 Consultation rooms
- Teleconference room
- Decay storage space
- Hot lab for drug preparation
- Blood and body fluid lab
- Central nursing station (x6 seats)
- Study coordinator workspace (x6)

- Dedicated waiting room
- Nurse practitioner workspace (x4)
- Allied heath staff workspace
- GE StarGuide SPECT/CT
- Veriton SPECT/CT\* (Clinical Nuc Med floor)
- Reading room with 3 PACS
- Locker room
- Break room
- Visiting provider drop-in room/computers
- Pneumatic tube station for radiopharmaceutical delivery
- \* Different floor, but in the same building

# Kern Center/Leadership Program

- •Tuba Kendi, MD
- •Geoff Johnson, MD, PhD
- •Annie Packard, MD
- •Jason Young, MD

•Brooke Gentzler, MBA, CNMT











# **Physician Team**

- Tuba Kendi, MD (Chair Therapy Operations)
- Corrie Bach, MD
- Mike Bold, MD
- Jolanta Durski, MD
- Eric Ehman, MD
- Ajit Goenka, MD
- Derek Johnson, MD
- Geoff Johnson, MD, PhD
- Brendan Lunn, MD
- Patrick Navin, MB, BCh, BAO
- Annie Packard, MD
- Hiroaki Takahashi, MD, PhD
- Matt Thorpe, MD, PhD
- Greg Wiseman, MD



















# **Multi-Disciplinary Leaders**

- A Oliver Sartor, MD
  - Med Onc
- Eugene Kwon, MD
  - Urology
- Kenny Merrell, MD
  - Rad Onc
- Thor Halfdanarson, MD
  - Med Onc
- Tim Hobday, MD
   Med Onc
- Brad Stish, MDRad Onc









# Mayo as a key partner for phase 0,1,11,111 and beyond

- Leading academic center
- Radiopharmaceutical Comprehensive Therapy Center of Excellence
  - This is the highest level of certification
  - New designation established by the Society of Nuclear Medicine and Molecular Imaging (SNMMI)
- Fully integrated multidisciplinary clinical and research teams
- Large practice
  - >20 theranostic cancer trials active at Mayo
  - 23 therapy rooms
  - >4,000 Lu doses given
- Top notch infrastructure
  - Cutting edge scanners, new theranostic center, Nuclear Medicine practice, PET radiochemistry, compounding nuclear pharmacy and research facilities embedded in cancer hospital



# Electron

- Small
   Low LET
- 2-12 mm: 1,000's cell diameters
  Crossfire killing
- Single DNA breaks
  - Secondary cancer
  - Hypoxic defenses

# Helium atom

- Big • High LET
- 2-3 cell diameters
  - Precise targeting
- Double DNA breaks
  - Kill tiny tumors
  - Overcome resistance
  - PSMA negative cells?
  - Bystander Killing

- How can we differentiate the effects of Beta and Alpha emission in the body?
- Answer
  - Mayo's Alpha-PET DoubLET technology
  - Key academic partner(s)
  - Imaging
  - Novel Readouts



# BACKGROUND

- Alpha radionuclide therapy (α-therapy) is emerging as a promising targeted radionuclide therapy to treat and potentially cure cancer
- Advantages
  - More powerful
  - More precise
  - Road to cure
- Disadvantages
  - α-therapy can't create images well
  - Lack perfect theranostic pairs with PET
    - Select lead compounds



Patient Selection PSMA PET

- Desired reality
  - High-quality PET imaging ideal for precise biodistribution of alpha-emitting radionuclide therapies
  - Perfect theranostic pairs are needed
- Current reality
  - Alpha-emitting radiopharmaceuticals cannot be imaged well
    - poor quality imaging
    - inordinately long time to image
    - cannot be imaged over a required dosimetry timeframe
    - cannot see smaller tumors
  - Different radiopharmaceuticals are used for imaging and therapy that have significantly different biodistribution, creating inaccurate data



# **Alpha-PET**

- We propose to resolve these issues and more by using a new Mayo Alpha-PET platform technology
- The platform will allow for...
  - Flexibility in laboratory experiments
  - Expediting selection of lead compounds
  - Expediting clinical trials
  - De-risking drug development
  - Accurate patient selection
  - Monitoring of therapeutic benefit during therapy cycles
  - Accurate calculation of radiation exposure to organs and tumors
  - Enhancing clinical workflows •



- To our knowledge, Alpha-PET is the first and only technology that allows a researcher to choose
  - Alpha
  - Beta
  - Alpha+Beta
  - Titration of doses
  - Perfectly matched biodistribution



- To our knowledge, Alpha-PET is the first and only technology that allows a researcher to choose
  - Alpha
  - Beta
  - Alpha+Beta
  - Titration of doses
  - Perfectly matched biodistribution
  - Can image with PET
  - Calculate Dosimetry



# **Double/Multi Chelator Model**

- Dual Chelator Concept
  - Johannes Notni lab
  - <sup>68</sup>Ga and <sup>213</sup>Bi
  - PET imaging of distribution





Wurzer et al 2016

# **Double/Multi Chelator Model**

- Issues
  - 1-hour T1/2
    - Supply Chain
  - Efficacy?
    - Clearance
  - Beta therapy option
    - Non-identical biodistribution





Wurzer et al 2016







3-5 mCi for PET Imaging



#### 3-5 mCi for PET Imaging

**Alpha Therapy** 

Allows for Alpha and Beta therapy: **Alpha-PET DoubLET** 



100-400 mCi for PET Dosimetry, Staging, Therapy-Monitoring **Alpha Therapy** 

- Binding of 64Cu Alpha-PET PSMA to cancer cells is PSMA specific
- PSMA expressing cell lines (LNCaP cells).
- Both binds to and is internalized by LNCaP cells, as confirmed in competition experiments.



- We can image tumors with 64Cu Alpha-PET PSMA
- In-vivo micro-PET imaging confirms cancer cell binding in a LNCaP mouse tumor model, as well as effective renal clearance.



PSMA+ Tumor 1: 0.341 X 0.428 inch PSMA+ Tumor 2: 0.256 X 0.352 inch

### Comparison of uptake of [<sup>68</sup>Ga]Ga-PSMA and [<sup>64</sup>Cu]Cu-NSN24901 in LNCaP tumor athymic nude mice



PSMA+ Tumor 1: 0.34 X 0.43 inch; PSMA+ Tumor 2: 0.26 X 0.35 inch

# Comparison of uptake of [<sup>68</sup>Ga]Ga-PSMA and [<sup>64</sup>Cu]Cu-NSN24901 in tumor, kidney and salivary gland of LNCaP tumor athymic nude mice



\*p < 0.05 [<sup>64</sup>Cu]Cu-NSN24901 Vs [<sup>68</sup>Ga]Ga-PSMA

Q?: Does the double Chelator Cause an issue? A: Not in this case example

# Comparison of uptake of [<sup>68</sup>Ga]Ga-PSMA and [<sup>64</sup>Cu]Cu-NSN24901 in tumor, kidney and salivary gland of LNCaP tumor athymic nude mice



\*p < 0.05 [<sup>64</sup>Cu]Cu-NSN24901 Vs [<sup>68</sup>Ga]Ga-PSMA

# Comparison of uptake of [<sup>68</sup>Ga]Ga-PSMA and [<sup>64</sup>Cu]Cu-NSN24901 in tumor, kidney and salivary gland of LNCaP tumor athymic nude mice



- We can kill tumors with 212Pb Alpha-PET PSMA and mice survive
- Treatment of prostate cancer xenograft with <sup>212</sup>Pb loaded construct reduced tumor size 38% in 3 days and complete response after 9 days

Pre-therapy imaging

Post-therapy imaging



• We can image tumors with Alpha-PET DOTATATE



We can image tumors with Alpha-PET FAPI



| Nuclide | Emission       | Imaging | Use                                                                                |
|---------|----------------|---------|------------------------------------------------------------------------------------|
| 64Cu    | Beta+<br>Beta- | PET     | Patient selection,<br>Biodistribution,<br>Dosimetry (tumor/organ),<br>Beta Therapy |



Hicks et al 2019

| Nuclide | Emission       | Imaging | Use                                                                                |
|---------|----------------|---------|------------------------------------------------------------------------------------|
| 64Cu    | Beta+<br>Beta- | PET     | Patient selection,<br>Biodistribution,<br>Dosimetry (tumor/organ),<br>Beta Therapy |
| 212Pb   | Alpha*         | NA      | Alpha Therapy                                                                      |



\* Decay is one Beta- with recoil daughter 212Bi emitting one Alpha. Also Gamma.

| Nuclide     | Emission             | Imaging | Use                                                                                |
|-------------|----------------------|---------|------------------------------------------------------------------------------------|
| 64Cu        | Beta+<br>Beta-       | PET     | Patient selection,<br>Biodistribution,<br>Dosimetry (tumor/organ),<br>Beta Therapy |
| 212Pb       | Alpha*               | NA      | Alpha Therapy                                                                      |
| 212Pb, 64Cu | Alpha*, Beta+, Beta- | PET     | DoubLET therapy,<br>Therapy monitoring                                             |

Patents-Pending

# • Alpha-PET DoubLET

- Structurally Identical
- Matched Biodistribution
- Matched T1/2

| Nuclide     | Emission             | Imaging | Use                                                                                |
|-------------|----------------------|---------|------------------------------------------------------------------------------------|
| 64Cu        | Beta+<br>Beta-       | PET     | Patient selection,<br>Biodistribution,<br>Dosimetry (tumor/organ),<br>Beta Therapy |
| 212Pb       | Alpha*               | NA      | Alpha Therapy                                                                      |
| 212Pb, 64Cu | Alpha*, Beta+, Beta- | PET     | DoubLET therapy,<br>Therapy monitoring                                             |
| 203Pb       | Gamma                | SPECT   | Patient Selection,<br>Biodistribution,<br>Dosimetry (tumor/organ)                  |

Mengshi et al 2020.



Carlos dos Santos et al 2019



| Nuclide     | Emission             | Imaging | Use                                                                                |
|-------------|----------------------|---------|------------------------------------------------------------------------------------|
| 64Cu        | Beta+<br>Beta-       | PET     | Patient selection,<br>Biodistribution,<br>Dosimetry (tumor/organ),<br>Beta Therapy |
| 212Pb       | Alpha*               | NA      | Alpha Therapy                                                                      |
| 212Pb, 64Cu | Alpha*, Beta+, Beta- | PET     | <b>DoubLET therapy</b> ,<br>Therapy monitoring                                     |
| 203Pb       | Gamma                | SPECT   | Patient Selection,<br>Biodistribution,<br>Dosimetry (tumor/organ)                  |
| 67Cu        | Beta+,<br>Gamma      | SPECT   | Biodistribution,<br>Dosimetry (tumor/organ)                                        |

Cullinane et al 2020

Mayo Clinic Confidential – Unauthorized disclosure is prohibited



Sahagia et al 2018.

| Nuclide     | Emission | Imaging | Use                                                                     |
|-------------|----------|---------|-------------------------------------------------------------------------|
| 64Cu        | 1 h      | 4 h     | ient selection,<br>distribution,<br>simetry (tumor/organ),<br>a Therapy |
| 212Pb       | KEN      |         | ha Therapy                                                              |
| 212Pb, 64Cu |          |         | u <b>bLET therapy</b> ,<br>erapy monitoring                             |
| 203Pb       |          |         | ient Selection,<br>distribution,<br>simetry (tumor/organ)               |
| 67Cu        | MH       | MM      | o distribution,<br>SUV simetry (tumor/organ)                            |

.

1000

Cullinane et al 2020

| Nuclide     | Emission             | Imaging | Use                                                                                |
|-------------|----------------------|---------|------------------------------------------------------------------------------------|
| 64Cu        | Beta+<br>Beta-       | PET     | Patient selection,<br>Biodistribution,<br>Dosimetry (tumor/organ),<br>Beta Therapy |
| 212Pb       | Alpha*               | NA      | Alpha Therapy                                                                      |
| 212Pb, 64Cu | Alpha*, Beta+, Beta- | PET     | <b>DoubLET therapy</b> ,<br>Therapy monitoring                                     |
| 203Pb       | Gamma                | SPECT   | Patient Selection,<br>Biodistribution,<br>Dosimetry (tumor/organ)                  |
| 67Cu        | Beta+,<br>Gamma      | SPECT   | Biodistribution,<br>Dosimetry (tumor/organ)                                        |
| 61Cu        | Beta+                | PET     | Patient Selection,<br>Biodistribution,<br>Dosimetry (tumor/organ)                  |

Fonseca et al. 2022

| Nuclide     | Emission             | Physical T1/2 | Use                                                                                |
|-------------|----------------------|---------------|------------------------------------------------------------------------------------|
| 64Cu        | Beta+<br>Beta-       | 12hr          | Patient selection,<br>Biodistribution,<br>Dosimetry (tumor/organ),<br>Beta Therapy |
| 212Pb       | Alpha*               | 11hr**        | Alpha Therapy                                                                      |
| 212Pb, 64Cu | Alpha*, Beta+, Beta- | 11hr/12hr     | <b>DoubLET therapy</b> ,<br>Therapy monitoring                                     |
| 203Pb       | Gamma                | 52hr          | Patient Selection,<br>Biodistribution,<br>Dosimetry (tumor/organ)                  |
| 67Cu        | Beta+,<br>Gamma      | 62hr          | Biodistribution,<br>Dosimetry (tumor/organ)                                        |
| 61Cu        | Beta+                | 3.3hr         | Patient Selection,<br>Biodistribution,<br>Dosimetry (tumor/organ)                  |

\*\* Double decay

## How do we "Read out" Alpha vs Beta vs Alpha+Beta?

- Outcome
  - Survival
  - Toxicity
- Imaging Response/PFS
  - Conventional (CT, MRI)
  - PET, SPECT
- Blood tests
  - ctDNA
  - Tumor "Secretome"
    - Extracellular Vesicles (EVs)

# BACKGROUND

• Beta radionuclide therapy ( $\beta$ -therapy) is established technology.

68Ga PSMA-11 PET/CT Before Therapy



177Lu-PSMA-617 Planar After Therapy

Qualitative only 2D like a bone scan

Rahba et al, JNM 2016

## BACKGROUND

• Beta radionuclide therapy ( $\beta$ -therapy) is established technology.

**PSMA PET/CT** 

**Patient Selection** 





Performed post-therapy Is a scan of the therapy itself Shows therapy successfully targeted tumors

**PSMA SPECT/CT** 

**Therapy Monitoring** 



177Lu-PSMA-617 SPECT/CT After Therapy

Quantitative 3D "like" a PET scan

©2020 MFMER | slide-48

# **177Lu-PSMA-617 Therapy Monitoring**



In press

# **177Lu-PSMA-617 Therapy Monitoring**



Patient Selection PSMA PET/CT Therapy-Monitoring SPECT PET/CT

In press

## **Circulating tumor-derived EVs reflect disease burden**

#### **Prostate Cancer**





Fabrice Lucien, PhD





Kim Y et al, Nanoscale 2022 Lucien F et al, IJROBP 2022

Sean Park, MD, PhD

# **PSMA** expression in tumor-derived EVs reflect tumor expression



#### Figure 6:

- A) Cellular PSMA expression in PSMA-low and PSMA-high PC3-PIP cells (positive for PSMA)
- B) Scatterplots showing PSMA expression in EVs from PSMA-low and high PC3-PIP cells
- C) Concentrations of PSMA-positive EVs from PSMA-low and -high PC3-PIP cells
- D) EV PSMA expression of PSMA-positive EVs from PSMA-low and -high PC3-PIP cells

# Tumor-derived EVs are enriched in disease-specific cargo

- RNA fusion transcripts (e.g TMPRSS2-ERG)
- Mutations (e.g AR-V7 Joncas MH, Lucien F et al, Prostate 2019)
- DNA alterations (e.g mutations, copy number variant)





# **Opportunities for radiopharmaceuticals**

- Comparative analysis of the EV cargo (DNA, RNA, proteins) in prostate cancer cells treated with alpha vs beta-emitters *in vitro* for discovery of markers of response/resistance
- Response/resistance signatures can be tested using patient plasma
- Circulating levels of PSMA-positive EVs and PSMA expression on EVs as baseline predictor of response to alpha-emitters and for monitoring response. (Ongoing work with PSMA-617)
- Immunocompetent mouse models of prostate cancer to characterize immunogenic cell death with alpha and beta-emitters

- To our knowledge, Alpha-PET is the first and only technology that allows a researcher to choose
  - Alpha
  - Beta
  - Alpha+Beta
  - Titration of doses
  - Perfectly matched biodistribution



- To our knowledge, Alpha-PET is the first and only technology that allows a researcher to choose
  - Alpha
  - Beta
  - Alpha+Beta
  - Titration of doses
  - Perfectly matched biodistribution
  - Can image with PET
  - Calculate Dosimetry



## How do we "Read out" Alpha vs Beta vs Alpha+Beta?

- Outcome
  - Survival
  - Toxicity
- Imaging Response/PFS
  - Conventional (CT, MRI)
  - PET, SPECT
- Blood tests
  - ctDNA
  - Tumor "Secretome"
    - Extracellular Vesicles (EVs)



# **Alpha-PET DoubLET**

A Flexible Theragnostic Molecular Platform Technology for Alpha and/or Beta Therapy with PET-based Dosimetry

### **RPT Interest Group 6-7-23**

Geoffrey B Johnson, MD, Ph.D Chair, Nuclear Medicine Associate Director, Mayo Clinic Comprehensive Cancer Center

Mukesh K Pandey, Ph.D, FRSC Director, Molecular Imaging Research Program

# First Installation in North America at Mayo Clinic Siemens Quadra Long-Bore PET/CT

- Installation September 2022
- 4 x length (Long-bore)
- 10 x sensitivity\*
  - Quality
  - Speed
  - Reduce Radiation





# First Installation in North America at Mayo Clinic Siemens Quadra Long-Bore PET/CT

- Dynamic full coverage scanning allows for:
  - Multiple tracer simultaneous imaging
    - CRISMA Technology
  - Compartment modeling to remove unbound tracer from the image
    - More accurate for predicting outcome?
  - Rapidly test new imaging and therapy radiopharmaceuticals



# **Compartment modeling for Alpha Dosimetry?**

• Remove/decrease background blood pool activity



Brad Kemp, PhD



# P3-MT100 (Medtrace, DK)



- Production of [O-15] Water
- Integrated synthesis and dose administration system
- Clean air environment
- Fully lead shielded
- Consumable sterile components
- Connected to cyclotron approx. 250
   ft distance

- RAPID-WATER phase 3 clinical trial



Better for radiopharmaceuticals with longer biologic half-life, slower binding, and/or slower clearance (such as antibodies)

| Nuclide     | Emission     | Imaging | Use                           |
|-------------|--------------|---------|-------------------------------|
| 89Zr        | Beta+        | PET     | Patient/RLT<br>selection      |
| 225Ac       | Alpha        | NA      | Therapy                       |
| 89Zr, 225Ac | Alpha, Beta+ | PET     | Therapy<br>Therapy monitoring |

Better for radiopharmaceuticals with longer biologic half-life, slower binding, and/or slower clearance (such as antibodies)

| Nuclide     | Emission     | Imaging | Use                           |
|-------------|--------------|---------|-------------------------------|
| 89Zr        | Beta+        | PET     | Patient/RLT<br>selection      |
| 223Ra       | Alpha        | NA      | Therapy                       |
| 89Zr, 223Ra | Alpha, Beta+ | PET     | Therapy<br>Therapy monitoring |